Sequence-based Structured Prediction for Semantic Parsing

نویسندگان

  • Chunyang Xiao
  • Marc Dymetman
  • Claire Gardent
چکیده

We propose an approach for semantic parsing that uses a recurrent neural network to map a natural language question into a logical form representation of a KB query. Building on recent work by (Wang et al., 2015), the interpretable logical forms, which are structured objects obeying certain constraints, are enumerated by an underlying grammar and are paired with their canonical realizations. In order to use sequence prediction, we need to sequentialize these logical forms. We compare three sequentializations: a direct linearization of the logical form, a linearization of the associated canonical realization, and a sequence consisting of derivation steps relative to the underlying grammar. We also show how grammatical constraints on the derivation sequence can easily be integrated inside the RNNbased sequential predictor. Our experiments show important improvements over previous results for the same dataset, and also demonstrate the advantage of incorporating the grammatical constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parsing Natural Language Conversations using Contextual Cues

In this work, we focus on semantic parsing of natural language conversations. Most existing methods for semantic parsing are based on understanding the semantics of a single sentence at a time. However, understanding conversations also requires an understanding of conversational context and discourse structure across sentences. We formulate semantic parsing of conversations as a structured pred...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Deep Learning in Lexical Analysis and Parsing

Lexical analysis and parsing tasks, modeling deeper properties of the words and their relationships to each other, typically involve word segmentation, part-ofspeech tagging and parsing. A typical characteristic of such tasks is that the outputs have structured. All of them can fall into three types of structured prediction problems: sequence segmentation, sequence labeling and parsing. In this...

متن کامل

Efficient Latent Structural Perceptron with Hybrid Trees for Semantic Parsing

Discriminative structured prediction models have been widely used in many natural language processing tasks, but it is challenging to apply the method to semantic parsing. In this paper, by introducing hybrid tree as a latent structure variable to close the gap between the input sentences and output representations, we formulate semantic parsing as a structured prediction problem, based on the ...

متن کامل

Representation Learning for Text-level Discourse Parsing

Text-level discourse parsing is notoriously difficult, as distinctions between discourse relations require subtle semantic judgments that are not easily captured using standard features. In this paper, we present a representation learning approach, in which we transform surface features into a latent space that facilitates RST discourse parsing. By combining the machinery of large-margin transi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016